If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-82=0
a = 1; b = -8; c = -82;
Δ = b2-4ac
Δ = -82-4·1·(-82)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-14\sqrt{2}}{2*1}=\frac{8-14\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+14\sqrt{2}}{2*1}=\frac{8+14\sqrt{2}}{2} $
| 120/20=93/m | | 2(4x+7)=6x+30 | | 10c+22=66 | | 180=3y-5 | | 6n+5(1-6n)=2(1-13n) | | 9.2m+5.514=158.234 | | 2x=10.5=21.5 | | 18x-2(x+5)=22 | | 7^x=63 | | 6k-(4+k)=-(6k+4) | | x/5=3x-112 | | 246=6(5k+6 | | 2/3m+1/6=5/6 | | 5-0.3k=-5 | | 155=5(7+6x) | | K+5=2k-k+5 | | 4(x-9)=8(×+3) | | (4x-7)=(6x-9) | | 3y-5=180 | | t/3=6216 | | x2–6x+8=0 | | 3p-25=115 | | 5(8-x)=-5 | | 5(8-x)=-4 | | X+6=3x-30 | | 4+2/3x=5/6 | | 11x+6=3x+1 | | 94=-8(5a-1)-3a | | 9i=27 | | 5p+7=3p+12 | | 1/9-3b=9 | | 6=2v+v |